Abstract
In this paper, we propose a decentralized semantic reasoning approach for modeling vague spatial objects from sensor network data describing vague shape phenomena, such as forest fire, air pollution, traffic noise, etc. This is a challenging problem as it necessitates appropriate aggregation of sensor data and their update with respect to the evolution of the state of the phenomena to be represented. Sensor data are generally poorly provided in terms of semantic information. Hence, the proposed approach starts with building a knowledge base integrating sensor and domain ontologies and then uses fuzzy rules to extract three-valued spatial qualitative information expressing the relative position of each sensor with respect to the monitored phenomenon’s extent. The observed phenomena are modeled using a fuzzy-crisp type spatial object made of a kernel and a conjecture part, which is a more realistic spatial representation for such vague shape environmental phenomena. The second step of our approach uses decentralized computing techniques to infer boundary detection and vertices for the kernel and conjecture parts of spatial objects using fuzzy IF-THEN rules. Finally, we present a case study for urban noise pollution monitoring by a sensor network, which is implemented in Netlogo to illustrate the validity of the proposed approach.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献