Fire Control System Operation Status Assessment Based on Information Fusion: Case Study

Author:

Li Yingshun,Wang Aina,Yi Xiaojian

Abstract

In traditional fault diagnosis strategies, massive and disordered data cannot be utilized effectively. Furthermore, just a single parameter is used for fault diagnosis of a weapons fire control system, which might lead to uncertainty in the results. This paper proposes an information fusion method in which rough set theory (RST) is combined with an improved Dempster–Shafer (DS) evidence theory to identify various system operation states. First, the feature information of different faults is extracted from the original data, then this information is used as the evidence of the state for a diagnosis object. By introducing RST, the extracted fault information is reduced in terms of the number of attributes, and the basic probability value of the reduced fault information is obtained. Based on an analysis of conflicts in the existing DS evidence theory, an improved conflict evidence synthesis method is proposed, which combines the improved synthesis rule and the conflict evidence weight allocation methods. Then, an intelligent evaluation model for the fire control system operation state is established, which is based on the improved evidence theory and RST. The case of a power supply module in a fire control computer is analyzed. In this case, the state grade of the power supply module is evaluated by the proposed method, and the conclusion verifies the effectiveness of the proposed method in evaluating the operation state of a fire control system.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multisensor fault diagnosis via Markov chain and Evidence theory;Engineering Applications of Artificial Intelligence;2023-11

2. A Fault Diagnosis Algorithm for the Dedicated Equipment Based on the CNN-LSTM Mechanism;Energies;2023-07-07

3. Multi-Module Decision Fusion in Operational Status Monitoring;IEEE Transactions on Control Systems Technology;2022-11

4. Reliability Analysis of State Self-sensing Transmission Assets;2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE);2021-12-15

5. A status-relevant blocks fusion approach for operational status monitoring;Engineering Applications of Artificial Intelligence;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3