Abstract
Combining biochar with chemical fertilizers or compost not only improves the shortcomings of biochar’s lack of fertility, but also extends the benefits of the compost. The application of biochar composite materials will be a future agricultural management strategy. In this study bagasse compost was mixed with wood biochar (w/w) at rates of 0% (B), 25% (BC), 50% (BC3), and 100% (no biochar, C) to produce four types of particle biochar compound materials (pBCM). These materials were applied to two types of soil (sandy soil and clayey soil) for a 180-day incubation to determine the decomposition rate and the nutrient release efficiency of the pBCMs. The results showed that C treatment had the highest decomposition rate in both types of soil. Overall, the materials decomposed faster in the sandy soil than in the clayey soil. Plants were grown over two 30-day crop periods. The plant yields of treatments C and BC3 were the highest in the first period and respectively decreased and increased in the second period. The experiment results revealed that in the biochar–compost compounds, compost increased the use efficiency of nitrogen and phosphorus in the soil, and biochar increased the nutrient use efficiency in the second period. These compound materials had greater capacity for long-term supply of nutrients in soil than did single-component ones.
Funder
Ministry of Science and Technology, Taiwan
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering