Navigation Resource Allocation Algorithm for LEO Constellations Based on Dynamic Programming

Author:

Wang Sixin12ORCID,Tang Xiaomei12,Li Jingyuan12,Huang Xinming12,Liu Jiyang12,Liu Jian12

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Key Laboratory of Satellite Navigation Technology, Changsha 410073, China

Abstract

Navigation resource allocation for low-earth-orbit (LEO) constellations refers to the optimal allocation of navigational assets when the number and allocation of satellites in the LEO constellation have been determined. LEO constellations can not only transmit navigation enhancement signals but also enable space-based monitoring (SBM) for real-time assessment of GNSS signal quality. However, proximity in the frequencies of LEO navigation signals and SBM can lead to significant interference, necessitating isolated transmission and reception. This separation requires that SBM and navigation signal transmission be carried out by different satellites within the constellation, thus demanding a strategic allocation of satellite resources. Given the vast number of satellites and their rapid movement, the visibility among LEO, medium-earth-orbit (MEO), and geostationary orbit (GEO) satellites is highly dynamic, presenting substantial challenges in resource allocation due to the computational intensity involved. Therefore, this paper proposes an optimal allocation algorithm for LEO constellation navigation resources based on dynamic programming. In this algorithm, a network model for the allocation of navigation resources in LEO constellations is initially established. Under the constraints of visibility time windows and onboard transmission and reception isolation, the objective is set to minimize the number of LEO satellites used while achieving effective navigation signal transmission and SBM. The constraints of resource allocation and the mathematical expression of the optimization objective are derived. A dynamic programming approach is then employed to determine the optimal resource allocation scheme. Analytical results demonstrate that compared to Greedy and Divide-and-Conquer algorithms, this algorithm achieves the highest resource utilization rate and the lowest computational complexity, making it highly valuable for future resource allocation in LEO constellations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3