Landsat-8/9 Atmospheric Correction Reliability Using Scene Statistics

Author:

Groeneveld David1,Ruggles Tim1,Gao Bo-Cai2ORCID

Affiliation:

1. Advanced Remote Sensing Inc., Hartford, SD 57033, USA

2. Remote Sensing Division, Naval Research Laboratory, Washington, DC 20375, USA

Abstract

Landsat data correction using the Land Surface Reflectance Code (LaSRC) has been proposed as the basis for the atmospheric correction of smallsats. While atmospheric correction can enhance smallsat data, the Landsat/LaSRC pathway delays output and may constrain accuracy and utility. The alternative, the Closed-form Method for Atmospheric Correction (CMAC), developed for smallsat application, provides surface reflectance derived solely from scene statistics. In a prior paper, CMAC closely agreed with LaSRC software for correction of the four VNIR bands of Landsat-8/9 images for conditions of low to moderate atmospheric effect over quasi-invariant warehouse-industrial targets. Those results were accepted as surrogate surface reflectance to support analysis of CMAC and LaSRC reliability for surface reflectance retrieval in two contrasting environments: shortgrass prairie and barren desert. Reliability was defined and tested through a null hypothesis: the same top-of-atmosphere reflectance under the same atmospheric condition will provide the same estimate of surface reflectance. Evaluated against the prior surrogate surface reflectance, the results found decreasing error with increasing wavelength for both methods. From 58 comparisons across the four bands, the LaSRC average absolute error ranged from 0.59% (NIR) to 50.30% (blue). CMAC provided reliable results: error was well constrained from 0.01% (NIR) to 0.98% (blue).

Funder

U.S. National Science Foundation Small Business Innovation Research program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3