Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia’s Complex Terrain

Author:

Gutierrez Silvia Roxana Mattos1,Fenta Ayele Almaw2ORCID,Meshesha Taye Minichil34,Belay Ashebir Sewale5

Affiliation:

1. Independent Researcher, Av. Buch Nro 1924, Zona Miraflores, La Paz, Bolivia

2. International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan

3. The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-0945, Japan

4. School of Civil and Water Resource Engineering, Debre Markos Institute of Technology, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia

5. Department of Earth Science, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia

Abstract

This study evaluated the accuracy of two new generation satellite rainfall estimates (SREs): Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and Integrated Multi-satellite Retrieval for GPM (IMERG) over Bolivia’s complex terrain. These SREs were compared against rainfall data from rain gauge measurements on a point-to-pixel basis for the period 2002–2020. The evaluation was performed across three regions with distinct topographical settings: Altiplano (Highland), Valles (Midland), and Llanos (Lowland). IMERG exhibited better accuracy in rainfall detection than CHIRPS, with the highest rainfall detection skills observed in the Highland region. However, IMERG’s higher rainfall detection skill was countered by its higher false alarm ratio. CHIRPS provided a more accurate estimation of rainfall amounts across the three regions, exhibiting low random errors and relative biases below 10%. IMERG tended to overestimate rainfall amounts, with marked overestimation by up to 75% in the Highland region. Bias decomposition revealed that IMERG’s high false rainfall bias contributed to its marked overestimation of rainfall. We showcase the utility of long-term CHIRPS data to investigate spatio-temporal rainfall patterns and meteorological drought occurrence in Bolivia. The findings of this study offer valuable insights for choosing appropriate SREs for informed decision-making, particularly in regions of complex topography lacking reliable gauge data.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3