SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer

Author:

Qin Yi12ORCID,Wang Jiarong1ORCID,Cao Shenyi3,Zhu Ming1,Sun Jiaqi12,Hao Zhicheng1,Jiang Xin1ORCID

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Remote sensing images usually contain abundant targets and complex information distributions. Consequently, networks are required to model both global and local information in the super-resolution (SR) reconstruction of remote sensing images. The existing SR reconstruction algorithms generally focus on only local or global features, neglecting effective feedback for reconstruction errors. Therefore, a Global Residual Multi-attention Fusion Back-projection Network (SRBPSwin) is introduced by combining the back-projection mechanism with the Swin Transformer. We incorporate a concatenated Channel and Spatial Attention Block (CSAB) into the Swin Transformer Block (STB) to design a Multi-attention Hybrid Swin Transformer Block (MAHSTB). SRBPSwin develops dense back-projection units to provide bidirectional feedback for reconstruction errors, enhancing the network’s feature extraction capabilities and improving reconstruction performance. SRBPSwin consists of the following four main stages: shallow feature extraction, shallow feature refinement, dense back projection, and image reconstruction. Firstly, for the input low-resolution (LR) image, shallow features are extracted and refined through the shallow feature extraction and shallow feature refinement stages. Secondly, multiple up-projection and down-projection units are designed to alternately process features between high-resolution (HR) and LR spaces, obtaining more accurate and detailed feature representations. Finally, global residual connections are utilized to transfer shallow features during the image reconstruction stage. We propose a perceptual loss function based on the Swin Transformer to enhance the detail of the reconstructed image. Extensive experiments demonstrate the significant reconstruction advantages of SRBPSwin in quantitative evaluation and visual quality.

Funder

Science and Technology Department of Jilin Province of China

Science and Technology project of Jilin Provincial Education Department of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3