Magnetic Hysteresis and Barkausen Noise in Plastically Deformed Steel Sheets

Author:

Fiorillo FaustoORCID,Küpferling Michaela,Appino Carlo

Abstract

The magnetic properties of steels are affected by plastic deformation, because the domain wall processes magnetoelastically interact with the dislocations and the residual stresses. The evolution of the magnetic hysteresis loop and its parameters with the type and degree of straining can thus provide a macroscopic signature of the underlying the mechanical and structural properties. Additional information can be achieved at a microscopic level through analysis of the Barkhausen noise, the signal generated by the stochastic flux variations associated with the discontinuous motion of the domain walls. Nondestructive methods for the structural evaluation of magnetic steels, devoted, in particular, to the investigation of work-hardening and state of internal stress following plastic straining, have therefore been developed in the literature, either through magnetic hysteresis or Barkhausen noise measurements. In this paper, we summarize significant results regarding the relationship between magnetic properties and plastic deformation in steel samples and the related experimental methods. Attention will be devoted, in particular, to the measurement and analysis of the Barkhausen noise spectral density and the way it relates to the macroscopic magnetic behavior and the structural properties.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3