Optimization of Processing Parameters for a Reverse Drawing–Flanging Combined Process for a B550CL High-Strength Steel Spoke Based on Grey Relational Analysis

Author:

Liu Yuli,Jiang Zhiyuan,Liu Chunmei

Abstract

Undesired wall thickness distribution and flanging cracking easily occur in reverse drawing–flanging combined processes of steel spokes when improper process parameters are used. Thus, based on GRA (grey relational analysis) and FEM (finite element method), a GRA model for a reverse drawing–flanging combined process for high strength steel B550CL spoke was established and validated. The results show that: (1) the most significant factors affecting uneven wall thickness distribution and excessive thinning in the mounting zone and center hole cracking are the friction coefficient and the shape of punch, respectively; (2) the non-uniformity of wall thickness U increases with the increase of the friction coefficient. The conical punch has a lower thinning ratio T, the spherical punch has a lower value of damage D; (3) considering synthetically the indexes of uneven wall thickness distribution, the excessive thinning in the mounting zone and center hole cracking, optimal results for the process parameters are obtained.

Funder

111 Talents Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference16 articles.

1. Study on fatigue property of wheel steel under different processing methods;Ling,2017

2. Integration of multi-step stamping effects in the bending fatigue analysis of a steel wheel

3. Forming technology and application of new generation advanced high strength steel for automobile;Kang;Iron Steel.,2010

4. Optimisation of the distribution of wall thickness in the multistage sheet metal forming of wheel disks

5. Forming of tailor blanks having local thickening for control of wall thickness of stamped products

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3