Digital-Twin-Assisted Edge-Computing Resource Allocation Based on the Whale Optimization Algorithm

Author:

Qiu Shaoming,Zhao JianchengORCID,Lv Yana,Dai Jikun,Chen FenORCID,Wang YahuiORCID,Li AoORCID

Abstract

With the rapid increase of smart Internet of Things (IoT) devices, edge networks generate a large number of computing tasks, which require edge-computing resource devices to complete the calculations. However, unreasonable edge-computing resource allocation suffers from high-power consumption and resource waste. Therefore, when user tasks are offloaded to the edge-computing system, reasonable resource allocation is an important issue. Thus, this paper proposes a digital-twin-(DT)-assisted edge-computing resource-allocation model and establishes a joint-optimization function of power consumption, delay, and unbalanced resource-allocation rate. Then, we develop a solution based on the improved whale optimization scheme. Specifically, we propose an improved whale optimization algorithm and design a greedy initialization strategy to improve the convergence speed for the DT-assisted edge-computing resource-allocation problem. Additionally, we redesign the whale search strategy to improve the allocation results. Several simulation experiments demonstrate that the improved whale optimization algorithm reduces the resource allocation and allocation objective function value, the power consumption, and the average resource allocation imbalance rate by 12.6%, 15.2%, and 15.6%, respectively. Overall, the power consumption with the assistance of the DT is reduced to 89.6% of the power required without DT assistance, thus, improving the efficiency of the edge-computing resource allocation.

Funder

Equipment Development Department of the Central Military Commission

Dalian University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3