Abstract
With the rapid increase of smart Internet of Things (IoT) devices, edge networks generate a large number of computing tasks, which require edge-computing resource devices to complete the calculations. However, unreasonable edge-computing resource allocation suffers from high-power consumption and resource waste. Therefore, when user tasks are offloaded to the edge-computing system, reasonable resource allocation is an important issue. Thus, this paper proposes a digital-twin-(DT)-assisted edge-computing resource-allocation model and establishes a joint-optimization function of power consumption, delay, and unbalanced resource-allocation rate. Then, we develop a solution based on the improved whale optimization scheme. Specifically, we propose an improved whale optimization algorithm and design a greedy initialization strategy to improve the convergence speed for the DT-assisted edge-computing resource-allocation problem. Additionally, we redesign the whale search strategy to improve the allocation results. Several simulation experiments demonstrate that the improved whale optimization algorithm reduces the resource allocation and allocation objective function value, the power consumption, and the average resource allocation imbalance rate by 12.6%, 15.2%, and 15.6%, respectively. Overall, the power consumption with the assistance of the DT is reduced to 89.6% of the power required without DT assistance, thus, improving the efficiency of the edge-computing resource allocation.
Funder
Equipment Development Department of the Central Military Commission
Dalian University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献