Non-Covalent Cross-Linking Hydrogel: A New Method for Visceral Hemostasis

Author:

Zhao Chenyu1,Wang Han1ORCID,Sun Xue1,Liu Ying2ORCID,Chen Jingjing1,Li Jiaqi13,Qiu Fanshan1,Han Qianqian1

Affiliation:

1. National Institutes for Food and Drug Control, Beijing 100050, China

2. Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China

3. Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China

Abstract

Excessive blood loss could lead to pathological conditions such as tissue necrosis, organ failure, and death. The limitations of recently developed hemostatic approaches, such as their low mechanical strength, inadequate wet tissue adhesion, and weak hemostatic activity, pose challenges for their application in controlling visceral bleeding. In this study, a novel hydrogel (CT) made of collagen and tannic acid (TA) was proposed. By altering the proportions between the two materials, the mechanical properties, adhesion, and coagulation ability were evaluated. Compared to commercial hydrogels, this hydrogel has shown reduced blood loss and shorter hemostatic time in rat hepatic and cardiac bleeding models. This was explained by the hydrogel’s natural hemostatic properties and the significant benefits of wound closure in a moist environment. Better biodegradability was achieved through the non-covalent connection between tannic acid and collagen, allowing for hemostasis without hindering subsequent tissue repair. Therefore, this hydrogel is a new method for visceral hemostasis that offers significant advantages in treating acute wounds and controlling major bleeding. And the production method is simple and efficient, which facilitates its translation to clinical applications.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3