The Optimization of Thermo-Mechanical Densification to Improve the Water Resistance of Outdoor Bamboo Scrimber

Author:

Wang Xiaoxia1,Zhu Rongxian1,Lei Wencheng1,Su Qiupeng2,Yu Wenji1

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China

2. Beijing Huarong Jinying Investment & Development Co., Ltd., Beijing 100034, China

Abstract

The water resistance of bamboo scrimber used in outdoor environments greatly affects its applications and lifecycle. Physical and chemical studies have been conducted to investigate the influence of the hot-pressing temperature during thermo-mechanical densification on the water resistance of outdoor bamboo scrimber. Investigated parameters included the failure mode of surfaces, the vertical density profile, and the change of chemical components, which provides theoretical support for optimizing bamboo scrimber for outdoor applications. Here, the vertical density profiles of bamboo scrimber were measured using an X-ray density profiler, and the response of cells and bonding interfaces of bamboo scrimber to water absorption were recorded by using extended depth-of-field 3D microscopy and field emission scanning electron microscopy (FE-SEM). The composition was evaluated by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) to investigate the effect of temperature on water resistance during thermo-mechanical densification. The water resistance of bamboo scrimber significantly improved as the temperature increased from 140 °C to 170 °C. The spring-back from the compressive deformation of cells and cracks was the main failure mode, and showed a negative correlation upon increasing the temperature. The moderate increase in cellulose crystallinity, the increase in the polymerization degree of the PF resin, and the thermal degradation of hemicelluloses explained the failure behavior of the bamboo scrimber at the molecular level.

Funder

Guangdong Provincial key research and development program

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3