Two-Step Macromolecule Separation Process with Acid Pretreatment and High-Shear-Assisted Extraction for Microalgae-Based Biorefinery

Author:

Kim Donghyun1,Kang Seul-Gi2,Chang Yong Keun2,Kwak Minsoo2

Affiliation:

1. Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar

2. Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

Abstract

A simple two-stage extraction and recovery method for macromolecules from microalgae biomass, termed CASS (concentrating the microalgae solution, acid pretreatment, high-shear-assisted lipid extraction, and separation), was developed. This method effectively processed the wet biomass of Chlorella sp. ABC-001 at a moderately low biomass concentration (50 g/L). The optimal conditions were acid pretreatment with 5 wt.% H2SO4 at 100 °C for 1 h, followed by high-shear extraction using hexane at 3000 rpm for 30 min. The acid pretreatment hydrolyzed carbohydrates and phospholipids, disrupting the cell wall and membrane, while high-shear mixing enhanced mass transfer rates between solvents and lipids, overcoming the hydraulic barrier at the cell surface. Within 10 min after completing the process, the extraction mixture achieved natural phase separation into water, solvent, and biomass residue layers, each enriched with carbohydrates, lipids, and proteins, respectively. The CASS process demonstrated high esterifiable lipid yields (91%), along with substantial recovery of glucose (90%) and proteins (100%). The stable phase separation prevented emulsion formation, simplifying downstream processing. This study presents the results on cell disruption, optimal acid treatment concentration, and high-shear mixing to achieve macromolecule separation, expanding the lipid-centric microalgal process to a comprehensive biorefinery concept.

Funder

Qatar University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3