Analysis of Synergistic Drivers of CO2 and NOX Emissions from Thermal Power Generating Units in Beijing–Tianjin–Hebei Region, 2010–2020

Author:

Wang Yaolin1ORCID,Yuan Zilin2,Yan Jun3,Zhang Haixu2,Guan Qinge4,Rao Sheng2,Jiang Chunlai2,Duan Zhiguo5

Affiliation:

1. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

2. Research Center for Emission Trading and Reduction, Chinese Academy of Environmental Planning, Beijing 100012, China

3. Zhejiang Ecological Environment Low-Carbon Development Center, Hangzhou 310007, China

4. Chinese Research Academy of Environmental Sciences, Beijing 100012, China

5. Eco-Environment Low Carbon Development Center of Inner Mongolia, Hohhot 010011, China

Abstract

Synergistic control of the emissions of air pollutants and CO2 is critical to the dual challenges of air quality improvement and climate change in China. Based on the emission inventories of thermal power units in Beijing, Tianjin, and Hebei, this study analyzes the CO2 and NOX emission characteristics of these units, and identifies and quantifies the synergistic drivers affecting these emission trends. The inventory data show that, between 2010 and 2020, NOX emissions were reduced by 86.1%, while CO2 emissions were reduced by only 29.8%. Although significant progress has been made in reducing NOX emissions through measures such as end-of-pipe treatment, controlling CO2 emissions remains a difficult task. The index decomposition analysis reveals that economic growth is the main driver of CO2 and NOX emission growth, energy intensity reduction is the main driver of CO2 emission reduction, and end-of-pipe treatment is the main driver of NOX emission reduction. Currently, coal occupies about 87% of the energy consumption of thermal power units in the Beijing–Tianjin–Hebei region, and remains the main type of energy for synergistic emissions, and the potential for emission reduction in the energy structure remains huge. For NOX emissions, it is expected that 90% of the reduction potential can be achieved through energy restructuring and end-of-pipe treatment. In conclusion, this high-precision unit-by-unit emission study confirms the effectiveness of the control policy for thermal power units in the region and provides some scientific reference for future policy formulation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3