Effects of Phosphate-Solubilizing Bacteria and N2-fixing Bacteria on Nutrient Uptake, Plant Growth, and Bioactive Compound Accumulation in Cyclocarya paliurus (Batal.) Iljinskaja

Author:

Wang ,Chen ,Xu ,Fu

Abstract

Research Highlights: We firstly interpreted nutritional mechanisms involved in growth regulation and phytochemical accumulation in Cyclocarya paliurus (Batal.) Iljinskaja under three inoculant types, and selected bacterial inoculations for multiple purposes of C. paliurus plantation. Co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) performed better in growth promotion and nutrient uptake than single bacterial inoculation. Background and Objectives: C. paliurus is a well-known medicinal plant as it accumulates bioactive compounds (BC) such as flavonoids, triterpenoids, and polysaccharides, in its leaves. However, the effects of plant growth-promoting rhizobacteria (PGPR) on the growth and BC yields in C. paliurus are not known. To fill this gap, the effects of different inoculants should be examined. Materials and Methods: A pot experiment was conducted and two-year-old C. paliurus seedlings were inoculated with three inoculant types (PSB, NFB, PSB + NFB). After four rounds of inoculation, the growth characteristics and concentrations of flavonoids, triterpenoids, and polysaccharides, as well as the nutrients in soil and leaves, were measured. Results: The inoculations resulted in the elevation of soil available nutrients, with improvements in plant growth, BC yield, and N and P uptake in leaves. However, the changes in BC yields were mainly a result of elevated leaf biomass rather than BC concentrations, and leaf biomass was regulated by C:N:P stoichiometry. Co-inoculation with PSB and NFB was applicable for leaf production, while inocula related to NFB resulted in higher BC yields than PSB and control. Conclusions: Our results implied that bacterial inoculants improved plant growth and BC yield by altering the nutrients in soil and leaves, while three inoculant types showed a different pattern in which co-inoculation with four strains presented a greater performance than single bacterial addition.

Funder

the Forestry Science and Technology Promotion Project from the State Forestry Administration of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3