Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum

Author:

Zhao Xuejun,Qin Yong,He Changbo,Jia Limin,Kou Linlin

Abstract

Rolling element bearings are widely used in various industrial machines. Fault diagnosis of rolling element bearings is a necessary tool to prevent any unexpected accidents and improve industrial efficiency. Although proved to be a powerful method in detecting the resonance band excited by faults, the spectral kurtosis (SK) exposes an obvious weakness in the case of impulsive background noise. To well process the bearing fault signal in the presence of impulsive noise, this paper proposes a fault diagnosis method based on the cyclic correntropy (CCE) function and its spectrum. Furthermore, an important parameter of CCE function, namely kernel size, is analyzed to emphasize its critical influence on the fault diagnosis performance. Finally, comparisons with the SK-based Fast Kurtogram are conducted to highlight the superiority of the proposed method. The experimental results show that the proposed method not only largely suppresses the impulsive noise, but also has a robust self-adaptation ability. The application of the proposed method is validated on a simulated signal and real data, including rolling element bearing data of a train axle.

Funder

National Natural Science Foundation of China

State Key Laboratory of Rail Traffic Control and Safety

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3