A 3D-Printed Standardized Modular Microfluidic System for Droplet Generation

Author:

Chen Junyi,Huang Shaoqi,Long Yan,Wang Kan,Guan Yangtai,Hou LianpingORCID,Dai BoORCID,Zhuang Songlin,Zhang Dawei

Abstract

Droplet-based microfluidics has a variety of applications, such as material synthesis and single-cell analysis. In this paper, we propose a modular microfluidic system using projection micro-stereolithography three-dimensional (3D) printing technology for droplet generation. All modules are designed using a standard cubic structure with a specific leakage-free connection interface. Versatile droplets, including single droplets, alternating droplets, merged droplets, and Janus particles, have been successfully produced. The droplet size and the generation rate can be flexibly controlled by adjusting the flow rates. The influence of the flow rate fraction between the discrete phase and the continuous phase over the generation of the alternating and merged droplets is discussed. Furthermore, the ‘UV curing’ module can be employed to solidify the generated droplets to avoid coalescence and fix the status of the Janus particles. The proposed modular droplet generators are promising candidates for various chemical and biological applications, such as single-cell incubation, screening of protein crystallization conditions, synthesis of nanoparticles, and gene delivery. In addition, we envision that more functional modules, e.g., valve, microreactor, and detection modules, could be developed, and the 3D standardized modular microfluidics could be further applied to other complex systems, i.e., concentration gradient generators and clinical diagnostic systems.

Funder

National Special Fund for the Development of Major Research Equipment and Instrument

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference32 articles.

1. A role for microfluidic systems in precision medicine;Nat. Commun.,2022

2. Microfluidic particle dam for direct visualization of SARS-CoV-2 antibody levels in COVID-19 vaccinees;Sci. Adv.,2022

3. AFM-compatible microfluidic platform for affinity-based capture and nanomechanical characterization of circulating tumor cells;Microsyst. Nanoeng.,2020

4. Generation of flow and droplets with ultra-long-range linear concentration gradient;Lab Chip,2021

5. An Oxygen-Concentration-Controllable Multiorgan Microfluidic Platform for Studying Hypoxia-Induced Lung Cancer-Liver Metastasis and Screening Drugs;ACS Sens.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3