Abstract
Rapid and accurate detection of acute myocardial infarction can improve patients’ chances of survival. Cardiac troponin I (cTn I) is an important diagnostic biomarker for acute myocardial infarction. However, current immunoassays are insufficient to accurately measure cTn I, as they have limited detection sensitivity and are time-consuming. Surface-enhanced Raman scattering (SERS) is a brilliant fingerprints diagnostic technique characterised by ultrasensitivity, fast response, and qualitative and quantitative analysis capabilities. In this study, reporter molecules (4-Mercaptobenzoic acid, 4-MBA) embedded Au@Ag core-shell nanospheres as SERS nanotags were prepared for the detection of cTn I. As the Raman reporters were embedded between the core and the shell, they could be protected from the external environment and nanoparticle aggregation. Excellent SERS performances were obtained due to the enhanced local electromagnetic field in the gap of core and shell metals. In a standard phosphate buffered saline (PBS) environment, the limit of detection for cTn I was 0.0086 ng mL−1 (8.6 ppt) with a good linear relationship. The excellent Raman detection performance was attributed to the localized surface plasmon resonance effect and strong electromagnetic field enhancement effect produced by the gap between the Au core and the Ag shell. The SERS nanotags we prepared were facile to synthesize, and the analysis procedure could be completed quickly (15 min), which made the detection of cTn I faster. Therefore, the proposed SERS nanotags have significant potential to be a faster and more accurate tool for acute myocardial infarction diagnostics.
Funder
National Natural Science Foundation of China
Clinical Research Plan of Shanghai Hospital Development Center
Science and Technology Commission of Shanghai Municipality
Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai
Translational Medicine Cross Research Fund of Shanghai Jiao Tong University
Health Care Project of Shanghai Municipal Health Commission
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献