Detection of A and B Influenza Viruses by Surface-Enhanced Raman Scattering Spectroscopy and Machine Learning

Author:

Tabarov ArtemORCID,Vitkin Vladimir,Andreeva Olga,Shemanaeva Arina,Popov Evgeniy,Dobroslavin Alexander,Kurikova Valeria,Kuznetsova Olga,Grigorenko Konstantin,Tzibizov Ivan,Kovalev AntonORCID,Savchenko Vitaliy,Zheltuhina Alyona,Gorshkov Andrey,Danilenko DariaORCID

Abstract

We demonstrate the possibility of applying surface-enhanced Raman spectroscopy (SERS) combined with machine learning technology to detect and differentiate influenza type A and B viruses in a buffer environment. The SERS spectra of the influenza viruses do not possess specific peaks that allow for their straight classification and detection. Machine learning technologies (particularly, the support vector machine method) enabled the differentiation of samples containing influenza A and B viruses using SERS with an accuracy of 93% at a concentration of 200 μg/mL. The minimum detectable concentration of the virus in the sample using the proposed approach was ~0.05 μg/mL of protein (according to the Lowry protein assay), and the detection accuracy of a sample with this pathogen concentration was 84%.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference42 articles.

1. Viral diagnostics in the era of digital polymerase chain reaction;Diagn. Microbiol. Infect. Dis.,2013

2. Kaslow, R., Stanberry, L., and Le Duc, J. (2014). Viral Infections of Humans, Springer. Immunological detection and characterization.

3. Detection of influenza viruses in throat swab by using polymerase chain reaction;Microbiol. Immunol.,1991

4. Лабoратoрная диагнoстика гриппа типoв A и Б метoдoм ПЦР;Вестник КазНУ. Серия биoлoгическая,2017

5. Estimating the false-negative test probability of SARS-CoV-2 by RT-PCR;Eurosurveillance,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3