Application of Split Coordinate Channel Attention Embedding U2Net in Salient Object Detection

Author:

Wu Yuhuan1,Wu Yonghong1

Affiliation:

1. School of Science, Wuhan University of Technology, Wuhan 430074, China

Abstract

Salient object detection (SOD) aims to identify the most visually striking objects in a scene, simulating the function of the biological visual attention system. The attention mechanism in deep learning is commonly used as an enhancement strategy which enables the neural network to concentrate on the relevant parts when processing input data, effectively improving the model’s learning and prediction abilities. Existing saliency object detection methods based on RGB deep learning typically treat all regions equally by using the extracted features, overlooking the fact that different regions have varying contributions to the final predictions. Based on the U2Net algorithm, this paper incorporates the split coordinate channel attention (SCCA) mechanism into the feature extraction stage. SCCA conducts spatial transformation in width and height dimensions to efficiently extract the location information of the target to be detected. While pixel-level semantic segmentation based on annotation has been successful, it assigns the same weight to each pixel which leads to poor performance in detecting the boundary of objects. In this paper, the Canny edge detection loss is incorporated into the loss calculation stage to improve the model’s ability to detect object edges. Based on the DUTS and HKU-IS datasets, experiments confirm that the proposed strategies effectively enhance the model’s detection performance, resulting in a 0.8% and 0.7% increase in the F1-score of U2Net. This paper also compares the traditional attention modules with the newly proposed attention, and the SCCA attention module achieves a top-three performance in prediction time, mean absolute error (MAE), F1-score, and model size on both experimental datasets.

Publisher

MDPI AG

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3