Clustering/Distribution Analysis and Preconditioned Krylov Solvers for the Approximated Helmholtz Equation and Fractional Laplacian in the Case of Complex-Valued, Unbounded Variable Coefficient Wave Number μ

Author:

Adriani Andrea1,Serra-Capizzano Stefano12,Tablino-Possio Cristina3

Affiliation:

1. Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy

2. Division of Scientific Computing, Department of Information Technology, Uppsala University, Lägerhyddsv 2, hus 2, SE-751 05 Uppsala, Sweden

3. Department of Mathematics and Applications, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy

Abstract

We consider the Helmholtz equation and the fractional Laplacian in the case of the complex-valued unbounded variable coefficient wave number μ, approximated by finite differences. In a recent analysis, singular value clustering and eigenvalue clustering have been proposed for a τ preconditioning when the variable coefficient wave number μ is uniformly bounded. Here, we extend the analysis to the unbounded case by focusing on the case of a power singularity. Several numerical experiments concerning the spectral behavior and convergence of the related preconditioned GMRES are presented.

Funder

European High-Performance Computing Joint Undertaking

Laboratory of Theory, Economics and Systems—Department of Computer Science at Athens University of Economics and Business

Publisher

MDPI AG

Reference21 articles.

1. Adriani, A., Sormani, R.L., Tablino-Possio, C., Krause, R., and Serra-Capizzano, S. (2024). Asymptotic spectral properties and preconditioning of an approximated nonlocal Helmholtz equation with Caputo fractional Laplacian and variable coefficient wave number μ. arXiv.

2. Preconditioning technique based on sine transformation for nonlocal Helmholtz equations with fractional Laplacian;Li;J. Sci. Comput.,2023

3. Garoni, C., and Serra-Capizzano, S. (2018). Generalized Locally Toeplitz Sequences: Theory and Applications, Springer.

4. Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations;Barbarino;Numer. Linear Algebra Appl.,2020

5. Bhatia, R. (1997). Matrix Analysis, Graduate Texts in Mathematics, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3