Enhanced Photoluminescence of Plasma-Treated Recycled Glass Particles

Author:

Remeš Zdeněk1ORCID,Babčenko Oleg1ORCID,Jarý Vítězslav1ORCID,Beranová Klára1ORCID

Affiliation:

1. FZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague, Czech Republic

Abstract

Recycled soda-lime glass powder is a sustainable material that is also often considered a filler in cement-based composites. The changes in the surface properties of the glass particles due to the treatments were analyzed by X-ray photoelectron spectroscopy (XPS) and optical spectroscopy. We have found that there is a relatively high level of carbon contamination on the surface of the glass particles (around 30 at.%), so plasma technology and thermal annealing were tested for surface cleaning. Room temperature plasma treatment was not sufficient to remove the carbon contamination from the surface of the recycled glass particles. Instead, the room temperature plasma treatment of recycled soda-lime glass particles leads to a significant enhancement in their room temperature photoluminescence (PL) by increasing the intensity and accelerating the decay of the photoluminescence. The enhanced blue PL after room-temperature plasma treatment was attributed to the presence of carbon contamination on the glass surface and associated charge surface and interfacial defects and interfacial states. Therefore, we propose blue photoluminescence under UV LED as a fast and inexpensive method to indicate carbon contamination on the surface of glass particles.

Funder

Czech Science Foundation

Ministry of Education, Youth and Sports of Czech Republic

Czech Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3