A Study on the Recovery of Head and the Total Dissolved Solids (TDS) from Long-Term Pressure Depressions in Low Permeable Coastal Aquifers

Author:

Chen Huali,Ding Guoping,Hu Cheng,Park EungyuORCID,Kim Yeongkyoo,Jeong Jina

Abstract

Studies on the recovery of head and total dissolved solids (TDS) in a coastal aquifer system from long-term pressure depressions because of groundwater abstraction (e.g., pumping) is essential for freshwater protection and seawater-intrusion prevention in coastal areas. A 2D numerical model is applied in this paper to investigate the recovery of head and TDS in terms of long-term behavior considering low permeability media. The spatial behavior of the transition zone (TZ), which was chosen as an indicator, was studied in depth with respect to the participant hydraulic and solute-transport characteristics of the aquifer. The sensitivity of the TZ to different aquifer parameters was evaluated. The hydraulic conductivity and rainfall recharge are the two most sensitive factors that affect the location of the TZ in homogeneous cases, and the spatial structure of the hydraulic conductivity field, namely, the correlation length and variance, largely influences the sensitivity of the TZ. The required time for the complete recovery of head in the heterogeneous cases is much shorter than that in the homogeneous cases, but the TDS recovery takes much more time. When the recovery of head is 90%, low porosity and large specific storage play an important role in the location of the TZ compared to other parameters, except for the hydraulic conductivity and recharge rate. The results of this study are meaningful for coastal-aquifer management and may be instructive in the restoration of coastal areas that have experienced seawater intrusion because of the long-term overexploitation of fresh groundwater.

Funder

National Natural Science Foundation of China

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3