Sensitivity Analysis of Extreme Daily Rainfall Depth in Summer Season on Surface Air Temperature and Dew-Point Temperature

Author:

Sim Inkyeong,Lee Okjeong,Kim SangdanORCID

Abstract

Looking at future data obtained from global climate models, it is expected that future extreme rainfall will increase in many parts of the world. The Clausius-Clapeyron equation provides a physical basis for understanding the sensitivity of rainfall in response to warming, but the relationship between rainfall and temperature is still uncertain. The purpose of this study is to analyze the sensitivity of extreme daily rainfall depth during the summer season (June–September) to climate change in Korea. The relationship between the observed extreme daily rainfall depth and the surface air temperature (SAT) and dew-point temperature (DPT), which were observed in the 60 sites of the Korea Meteorological Administration, were analyzed. The same analysis was also performed using future data provided in various climate models. In addition, the future trends of extreme rainfall, SAT, and DPT were analyzed using future data obtained from climate models, and the effects of increasing SAT and DPT on future extreme rainfall changes were investigated. Finally, it has been confirmed that using changes in SAT and DPT to look at changes in future extreme rainfall can give more consistent future projection results than using future rainfall data directly.

Funder

National Research Foundation of Kore

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3