Acoustic Emission Signal Fault Diagnosis Based on Compressed Sensing for RV Reducer

Author:

Yang JianweiORCID,Liu ChangORCID,Xu Qitong,Tai Jinyi

Abstract

The rotate vector (RV) reducer has a complex structure and highly coupled internal components. Acoustic emission (AE) signal, which is more sensitive to a weak fault, is selected for fault diagnosis of the RV reducer. The high sampling frequency and big data are the challenges for AE signal store and analysis. This study combines compressed sensing (CS) and convolutional neural networks. As a result, data redundancy is significantly reduced while retaining most of the information, and the analysis efficiency is improved. Firstly, the time-domain AE signal was projected into the compression domain to obtain the compression signal; then, the wavelet packet decomposition in the compressed domain was performed to obtain the information of each frequency band. Next, the frequency band information was sent into the input layer of the multi-channel convolutional layer, and the energy pooling layer mines the energy characteristics of each frequency band. Finally, the softmax classifier was used to classify and predict different fault types of RV reducers. The self-fabricated RV reducer experimental platform was used to verify the proposed method. The experimental results show that the proposed method can effectively extract the fault features in the AE signal of the RV reducer, improve the efficiency of signal processing and analysis, and achieve the accurate classification of RV reducer faults.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3