Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach

Author:

Wu TingyaoORCID,Yu Hongan,Jiang NanORCID,Zhou Chuanbo,Luo Xuedong

Abstract

We propose a mechanical learning method that can be used to predict stability coefficients for slopes where slopes with predetermined shear planes are subjected to cyclic seismic loads under undrained conditions. Firstly, shear tests with cyclic loading of different parameters were simulated on designated slip zone soil specimens, in which the strain softening process leading to landslide occurrence was closely observed. At the same time, based on the limit equilibrium analysis of the Sarma method, the variation of slope stability coefficients under different cyclic loads was investigated. Finally, a Box–Jenkins’ modeling approach is used to predict the data from the time series of slope stability coefficients using a mechanical learning approach. The simulation results show that (1) reduction in coordination number can be an accurate indicator of the level of strain softening and evolutionary processes; (2) the gradual reduction of shear stress facilitates the soil strain softening process, while different cyclic loading stress amplitudes will result in rapid penetration or non-penetration of the fracture zone by means of particulate flow. Although the confining pressure of the slip zone soil can inhibit the increase of fractures, it has a limited inhibitory effect on strain softening; (3) based on field observations of the slope stability factor and stress field, two possible landslide triggering mechanisms are described. (4) Mechanical learning of time series can accurately predict the changing pattern of stability coefficients of slopes without loading. This study establishes a potential bridge between the geological investigation of landslides and the theoretical background of landslide stability coefficient prediction.

Funder

National Natural Science Foundation of China

Hubei Key Laboratory of Blasting Engineering Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3