Cryptanalysis and Improvement of Several Identity-Based Authenticated and Pairing-Free Key Agreement Protocols for IoT Applications

Author:

Sun Haiyan1,Li Chaoyang1ORCID,Zhang Jianwei1,Liang Shujun1,Huang Wanwei1

Affiliation:

1. College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

Abstract

Internet of Things (IoT) applications have been increasingly developed. Authenticated key agreement (AKA) plays an essential role in secure communication in IoT applications. Without the PKI certificate and high time-complexity bilinear pairing operations, identity-based AKA (ID-AKA) protocols without pairings are more suitable for protecting the keys in IoT applications. In recent years, many pairing-free ID-AKA protocols have been proposed. Moreover, these protocols have some security flaws or relatively extensive computation and communication efficiency. Focusing on these problems, the security analyses of some recently proposed protocols have been provided first. We then proposed a family of eCK secure ID-AKA protocols without pairings to solve these security problems, which can be applied in IoT applications to guarantee communication security. Meanwhile, the security proofs of these proposed ID-AKA protocols are provided, which show they can hold provable eCK security. Some more efficient instantiations have been provided, which show the efficient performance of these proposed ID-AKA protocols. Moreover, comparisons with similar schemes have shown that these protocols have the least computation and communication efficiency at the same time.

Funder

National Natural Science Foundation of China

Key Research and Development Special Project of Henan Province

Science and Technology Program of Henan Province

Doctor Scientific Research Fund of Zhengzhou University of Light Industry

Foundation of State Key Laboratory of Public Big Data

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3