An Improved Mask R-CNN Micro-Crack Detection Model for the Surface of Metal Structural Parts

Author:

Yang Fan1,Huo Junzhou1,Cheng Zhang1,Chen Hao1,Shi Yiting1

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Micro-crack detection is an essential task in critical equipment health monitoring. Accurate and timely detection of micro-cracks can ensure the healthy and stable service of equipment. Aiming at improving the low accuracy of the conventional target detection model during the task of detecting micro-cracks on the surface of metal structural parts, this paper built a micro-cracks dataset and explored a detection performance optimization method based on Mask R-CNN. Firstly, we improved the original FPN structure, adding a bottom-up feature fusion path to enhance the information utilization rate of the underlying feature layer. Secondly, we added the methods of deformable convolution kernel and attention mechanism to ResNet, which can improve the efficiency of feature extraction. Lastly, we modified the original loss function to optimize the network training effect and model convergence rate. The ablation comparison experiments shows that all the improvement schemes proposed in this paper have improved the performance of the original Mask R-CNN. The integration of all the improvement schemes can produce the most significant performance improvement effects in recognition, classification, and positioning simultaneously, thus proving the rationality and feasibility of the improved scheme in this paper.

Funder

National Natural Science Foundation of China

Major special science and technology project of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3