Synthesis and Characterization of Sr-Doped ZnSe Nanoparticles for Catalytic and Biological Activities

Author:

Beena V.,Rayar S. L.,Ajitha S.,Ahmad AwaisORCID,Albaqami Munirah D.,Alsabar Fatmah Ahmed Ali,Sillanpää MikaORCID

Abstract

The development of cost-effective and ecofriendly approaches toward water purification and antibacterial activity is a hot research topic in this era. Purposely, strontium-doped zinc selenide (Sr-doped ZnSe) nanoparticles, with different molar ratios of Sr2+ cations (0.01, 0.05, and 0.1), were prepared via the co-precipitation method, in which sodium borohydride (NaBH4) and 2-mercaptoethanol were employed as reducing and stabilizing agents, respectively. The ZnSe cubic structure expanded by Sr2+ cations was indicated by X-ray diffraction (XRD) analysis. The absorption of the chemical compounds on the surface was observed via Fourier transform infrared (FT-IR) spectroscopy. The optical orientation was measured by ultraviolet–visible diffused reflectance spectroscopy (UV-DRS) analysis. The surface area, morphology, and elemental purity were analyzed using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive spectroscopy (EDS) analyses. The oxidation state and valency of the synthesized nanoparticles were analyzed using X-ray photoelectron spectroscopy (XPS). Sr-doped ZnSe nanoparticles were investigated for photocatalytic degradation of methyl orange (MO), and their antibacterial potential was investigated against different bacterial strains. The antibacterial activity examined against Staphylococcus aureus and Escherichia coli implied the excellent biological activity of the nanoparticles. Moreover, the Sr-doped ZnSe nanoparticles were evaluated by the successful degradation of methyl orange under visible light irradiation. Therefore, Sr-doped ZnSe nanoparticles have tremendous potential in biological and water remediation fields.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3