From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning

Author:

Stoeve MaikeORCID,Schuldhaus Dominik,Gamp Axel,Zwick Constantin,Eskofier Bjoern M.ORCID

Abstract

The applicability of sensor-based human activity recognition in sports has been repeatedly shown for laboratory settings. However, the transferability to real-world scenarios cannot be granted due to limitations on data and evaluation methods. On the example of football shot and pass detection against a null class we explore the influence of those factors for real-world event classification in field sports. For this purpose we compare the performance of an established Support Vector Machine (SVM) for laboratory settings from literature to the performance in three evaluation scenarios gradually evolving from laboratory settings to real-world scenarios. In addition, three different types of neural networks, namely a convolutional neural net (CNN), a long short term memory net (LSTM) and a convolutional LSTM (convLSTM) are compared. Results indicate that the SVM is not able to reliably solve the investigated three-class problem. In contrast, all deep learning models reach high classification scores showing the general feasibility of event detection in real-world sports scenarios using deep learning. The maximum performance with a weighted f1-score of 0.93 was reported by the CNN. The study provides valuable insights for sports assessment under practically relevant conditions. In particular, it shows that (1) the discriminative power of established features needs to be reevaluated when real-world conditions are assessed, (2) the selection of an appropriate dataset and evaluation method are both required to evaluate real-world applicability and (3) deep learning-based methods yield promising results for real-world HAR in sports despite high variations in the execution of activities.

Funder

German Research Foundation (DFG), Heisenberg

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3