A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception

Author:

Liu Changxin1ORCID,Chen Nanxi1,Xing Guangyi1,Chen Runhe1,Shao Tong1,Shan Baichuan1,Pan Yilin2,Xu Minyi1ORCID

Affiliation:

1. Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. Artificial Intelligence College, Dalian Maritime University, Dalian 116026, China

Abstract

Underwater vehicles can operate independently in the exploitation of marine resources. However, water flow disturbance is one of the challenges underwater vehicles must face. The underwater flow direction sensing method is a feasible way to overcome the challenges but faces difficulties such as integrating the existing sensors with underwater vehicles and high-cost maintenance fees. In this research, an underwater flow direction sensing method based on the thermal tactility of the micro thermoelectric generator (MTEG) is proposed, with the theoretical model established. To verify the model, a flow direction sensing prototype is fabricated to carry out experiments under three typical working conditions. The three typical flow direction conditions are: condition No. 1, in which the flow direction is parallel to the x-axis; condition No. 2, in which the flow direction is at an angle of 45° to the x-axis; and condition No. 3, which is a variable flow direction condition based on condition No. 1 and condition No. 2. According to the experimental data, the variations and orders of the prototype output voltages under three conditions fit the theoretical model, which means the prototype can identify the flow direction of three conditions. Besides, experimental data show that in the flow velocity range of 0~5 m/s and the flow direction variation range of 0~90°, the prototype can accurately identify the flow direction in 0~2 s. The first time utilizing MTEG on underwater flow direction perception, the underwater flow direction sensing method proposed in this research is cheaper and easier to be applied on the underwater vehicles than traditional underwater flow direction sensing methods, which means it has great application prospects in underwater vehicles. Besides, the MTEG can utilize the waste heat of the underwater vehicle battery as the energy source to achieve self-powered work, which greatly enhances its practical value.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3