iTRAQ-Based Quantitative Proteomic Analysis of a Toxigenic Dinoflagellate Alexandrium catenella at Different Stages of Toxin Biosynthesis during the Cell Cycle

Author:

Zhang Shu-Fei,Zhang Yong,Lin Lin,Wang Da-ZhiORCID

Abstract

Paralytic shellfish toxins (PSTs) are a group of potent neurotoxic alkaloids that are produced mainly by marine dinoflagellates. PST biosynthesis in dinoflagellates is a discontinuous process that is coupled to the cell cycle. However, little is known about the molecular mechanism underlying this association. Here, we compared global protein expression profiles of a toxigenic dinoflagellate, Alexandrium catenella, collected at four different stages of toxin biosynthesis during the cell cycle, using an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach. The results showed that toxin biosynthesis occurred mainly in the G1 phase, especially the late G1 phase. In total, 7232 proteins were confidently identified, and 210 proteins exhibited differential expression among the four stages. Proteins involved in protein translation and photosynthetic pigment biosynthesis were significantly upregulated during toxin biosynthesis, indicating close associations among the three processes. Nine toxin-related proteins were detected, and two core toxin biosynthesis proteins, namely, sxtA and sxtI, were identified for the first time in dinoflagellates. Among these proteins, sxtI and ompR were significantly downregulated when toxin biosynthesis stopped, indicating that they played important roles in the regulation of PST biosynthesis. Our study provides new insights into toxin biosynthesis in marine dinoflagellates: nitrogen balance among different biological processes regulates toxin biosynthesis, and that glutamate might play a key modulatory role.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3