Acute Low-Dose Hyperoxia during a Single Bout of High-Intensity Interval Exercise Does Not Affect Red Blood Cell Deformability and Muscle Oxygenation in Trained Men—A Randomized Crossover Study

Author:

Freitag NilsORCID,Böttrich Tim,Weber Pia D.,Manferdelli Giorgio,Bizjak Daniel A.ORCID,Grau Marijke,Sanders Tanja C.,Bloch Wilhelm,Schumann Moritz

Abstract

Recent technological developments provide easy access to use an artificial oxygen supply (hyperoxia) during exercise training. The aim of this study was to assess the efficacy of a commercially available oxygen compressor inducing low-dose hyperoxia, on limiting factors of endurance performance. Thirteen active men (age 24 ± 3 years) performed a high-intensity interval exercise (HIIE) session (5 × 3 min at 80% of Wmax, separated by 2 min at 40% Wmax) on a cycle ergometer, both in hyperoxia (4 L∙min−1, 94% O2, HYP) or ambient conditions (21% O2, NORM) in randomized order. The primary outcome was defined as red blood cell deformability (RBC-D), while our secondary interest included changes in muscle oxygenation. RBC-D was expressed by the ratio of shear stress at half-maximal deformation (SS1/2) and maximal deformability (EImax) and muscle oxygenation of the rectus femoris muscle was assessed by near-infrared spectroscopy. No statistically significant changes occurred in SS1/2 and EImax in either condition. The ratio of SS1/2 to EImax statistically decreased in NORM (p < 0.01; Δ: −0.10; 95%CI: −0.22, 0.02) but not HYP (p > 0.05; Δ: −0.16; 95%CI: −0.23, −0.08). Muscle oxygenation remained unchanged. This study showed that low-dose hyperoxia during HIIE using a commercially available device with a flow rate of only 4 L·min−1 may not be sufficient to induce acute ergogenic effects compared to normoxic conditions.

Publisher

MDPI AG

Reference67 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3