The Microwave Temperature and Humidity Profiler: Description and Preliminary Results

Author:

Munoz-Martin Joan Francesc1ORCID,Bosch-Lluis Xavier1ORCID,Pradhan Omkar2ORCID,Brown Shannon T.3,Kangaslahti Pekka P.2,Tanner Alan B.3,Ogut Mehmet3,Misra Sidharth3,Lim Boon H.34

Affiliation:

1. Signal Processing and Networks Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA

2. Microwave Systems Technology Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA

3. Microwave Instrument Science Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA

4. Blue Origin, Kent, WA 98032, USA

Abstract

This manuscript presents the Microwave Temperature and Humidity Profiler (MTHP), a dual-band spectroradiometer designed for measuring multi-incidence angle temperature and humidity atmospheric profiles from an aircraft platform. The MTHP bands are at 60 GHz for measuring the oxygen complex lines, therefore at this band, MTHP has a hyperspectral radiometer able to provide 2048 channels over an 8 GHz bandwidth, and 183 GHz for measuring water vapor, which only uses four channels since this absorption band’s spectral richness is simpler. The MTHP builds upon the Microwave Temperature Profiler (MTP) with the inclusion of the hyperspectral radiometer. The instrument’s design, components, and calibration methods are discussed in detail, with a focus on the three-point calibration scheme involving internal calibration loads and static air temperature readings. Preliminary results from the Technological Innovation into Iodine and GV aircraft Environmental Research (TI3GER) campaign are presented, showcasing the instrument’s performance during flights across diverse geographical regions. The manuscript presents successful antenna temperature measurements at 60 GHz and 183 GHz. The hyperspectral measurements are compared with a simulated antenna temperature using the Atmospheric Radiative Transfer Simulator (ARTS) showing an agreement better than R2 > 0.88 for three of the flights analyzed. Additionally, the manuscript draws attention to potential Radio Frequency Interference (RFI) effects observed during a specific flight, underscoring the instrument’s sensitivity to external interference. This is the first-ever airborne demonstration of a broadband and hyperspectral multi-incidence angle 60 GHz measurement. Future work on the MTHP could result in an improved spatial resolution of the atmospheric temperature vertical profile and, hence, help in estimating the Planetary Boundary Layer (PBL) with better accuracy. The MTHP and its hyperspectral multi-incidence angle at 60 GHz have the potential to be a valuable tool for investigating the PBL’s role in atmospheric dynamics, offering insights into its impact on Earth’s energy, water, and carbon cycles.

Funder

Jet Propulsion Laboratory/California Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Space Studies Board, and National Academies of Sciences, Engineering, and Medicine (2018). Thriving on Our Changing Planet, The National Academies Press.

2. (2022, June 07). Turbulence Structure in the Convective Boundary Layer in: Journal of the Atmospheric Sciences Volume 33 Issue 11 (1976). Available online: https://journals.ametsoc.org/view/journals/atsc/33/11/1520-0469_1976_033_2152_tsitcb_2_0_co_2.xml.

3. Teixeira, J., Piepmeier, J.R., Nehrir, A.R., Ao, C.O., Chen, S.S., Clayson, C.A., Fridlind, A.M., Lebsock, M., Mccarty, W., and Salmun, H. (2021). Toward a Global Planetary Boundary Layer Observing System: The NASA PBL Incubation Study Team Report.

4. Planetary Boundary Layer Height Estimates from ICESat-2 and CATS Backscatter Measurements;Palm;Front. Remote Sens.,2021

5. Differential Absorption Radar Techniques: Surface Pressure;Lebsock;Atmos. Meas. Tech.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3