A New Multi-Sensor Stream Data Augmentation Method for Imbalanced Learning in Complex Manufacturing Process

Author:

Xu Dongting,Zhang Zhisheng,Shi JinfeiORCID

Abstract

Multiple sensors are often mounted in a complex manufacturing process to detect failures. Due to the high reliability of modern manufacturing processes, failures only happen occasionally. Therefore, data collected in practical manufacturing processes are extremely imbalanced, which often brings about bias of supervised learning models. Data collected by the multiple sensors can be regarded as multivariate time series or multi-sensor stream data. The high dimension of multi-sensor stream data makes building models even more challenging. In this study, a new and easy-to-apply data augmentation approach, namely, imbalanced multi-sensor stream data augmentation (IMSDA), is proposed for imbalanced learning. IMSDA can generate high quality of failure data for all dimensions. The generated data can keep the similar temporal property of the original multivariate time series. Both raw data and generated data are used to train the failure detection models, but the models are tested by the same real dataset. The proposed method is applied to a real-world industry case. Results show that IMSDA can not only obtain good quality failure data to reduce the imbalance level but also significantly improve the performance of supervised failure detection models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-enhanced predictive maintenance in hybrid roll-to-roll manufacturing integrating multi-sensor data and self-supervised learning;The International Journal of Advanced Manufacturing Technology;2024-08-15

2. Hybrid resampling and weighted majority voting for multi-class anomaly detection on imbalanced malware and network traffic data;Engineering Applications of Artificial Intelligence;2024-02

3. A Data Quality Assessment and Control Method in Multiple Products Manufacturing Process;2022 5th International Conference on Data Science and Information Technology (DSIT);2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3