Experimental Study on Shear Wave Transmission in Fractured Media

Author:

Cai MingORCID,Wu Hongliang,Xin Yi,Liu Peng,Zhang Chengguang,Tang Jun,Lin Minjie,Tan Lihong

Abstract

Unconventional oil and gas reservoirs have broad exploration and development prospects. Fracture parameters and effectiveness evaluation are two of the key tasks for the evaluation of these types of reservoirs. Array acoustic logging can be used for fracture evaluation to compensate for the deficiencies of the image logging fracture evaluation method. Therefore, to develop acoustic logging evaluation methods as well as nondestructive testing methods for fractures, experiments were conducted to study the shear wave transmission in fractured media. Experiment data demonstrate a good correlation between the shear wave attenuation coefficient and fracture width, and the shear wave attenuation coefficients rise logarithmically with the increase in the fracture width for all models with different porosities and distinct dip angles of fractures. The shear wave attenuation coefficient changes relatively faster with the fracture width when the fracture width is within 250 μm. In addition, the shear wave attenuation is affected by the core porosity and fracture dip angle. When the fracture width is constant, the shear wave attenuation caused by the 0° fracture is relatively larger and is obviously greater than that of the fractures at other angles, which is consistent with the existing experimental results. The results of this study can be used to guide further research on amplitude compensation methods for sonic signal transmission in fractured media and fracture evaluation methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Unconventional hydrocarbon resources in China and the prospect of exploration and development

2. Review of fracture identification with well logs and seismic data;Sun;Prog. Geophys.,2014

3. Progress in tight sandstone reservoir fractures research;Ding;Adv. Earth Sci.,2015

4. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs;Lai;Prog. Geophys.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3