Non-Intrusive Pipeline Flow Detection Based on Distributed Fiber Turbulent Vibration Sensing

Author:

Shang Ying,Wang Chen,Zhang Yongkang,Zhao Wenan,Ni Jiasheng,Peng Gangding

Abstract

We demonstrate a non-intrusive dynamic monitoring method of oil well flow based on distributed optical fiber acoustic sensing (DAS) technology and the turbulent vibration. The quantitative measurement of the flow rate is theoretically acquired though the amplitude of the demodulated phase changes from DAS based on the flow impact in the tube on the pipe wall. The experimental results show that the relationships between the flow rate and the demodulated phase changes, in both a whole frequency region and in a sensitive-response frequency region, fit the quadratic equation well, with a max R2 of 0.997, which is consistent with the theoretical simulation results. The detectable flow rate is from 0.73 m3/h to 2.48 m3/h. The experiments verify the feasibility of DAS system flow monitoring and provide technical support for the practical application of the downhole flow measurement.

Funder

National Natural Science Foundation of China

Colleges and Universities Youth Innovation and Technology Support Program of Shandong Province

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3