Examining the Effects of Altitude on Workload Demands in Professional Basketball Players during the Preseason Phase

Author:

Ibáñez Sergio J.1ORCID,Gómez-Carmona Carlos D.12ORCID,González-Espinosa Sergio13,Mancha-Triguero David145ORCID

Affiliation:

1. Research Group in Optimization of Training and Sports Performance (GOERD), Department of Didactics of Music Plastic and Body Expression, Faculty of Sport Science, University of Extremadura, 10003 Caceres, Extremadura, Spain

2. BioVetMed & SportSci Research Group, International Excellence Campus “Mare Nostrum”, Department of Physical Activity and Sport, Faculty of Sport Sciences, University of Murcia, 30720 San Javier, Murcia, Spain

3. NÌKE: Research Group in Education, Health and Sports Performance, Didactics of Physical Education and Health, International University of La Rioja, 26006 Logroño, La Rioja, Spain

4. Physical Education and Sports Department, Cardenal Spínola CEU, Andalucía University, 41930 Bormujos, Sevilla, Spain

5. Physical Education and Sports Department, Fundación San Pablo CEU, Andalucía University, 41930 Bormujos, Sevilla, Spain

Abstract

Basketball involves frequent high-intensity movements requiring optimal aerobic power. Altitude training can enhance physiological adaptations, but research examining its effects in basketball is limited. This study aimed to characterize the internal/external workload of professional basketball players during preseason and evaluate the effects of altitude and playing position. Twelve top-tier professional male basketball players (Liga Endesa, ACB; guards: n = 3, forwards: n = 5, and centers: n = 4) participated in a crossover study design composed of two training camps with nine sessions over 6 days under two different conditions: high altitude (2320 m) and sea level (10 m). Internal loads (heart rate, %HRMAX) and external loads (total distances covered across speed thresholds, accelerations/decelerations, impacts, and jumps) were quantified via wearable tracking and heart rate telemetry. Repeated-measures MANOVA tested the altitude x playing position effects. Altitude increased the total distance (+10%), lower-speed running distances (+10–39%), accelerations/decelerations (+25–30%), average heart rate (+6%), time in higher-intensity HR zones (+23–63%), and jumps (+13%) across all positions (p < 0.05). Positional differences existed, with guards accruing more high-speed running and centers exhibiting greater cardiovascular demands (p < 0.05). In conclusion, a 6-day altitude block effectively overloads training, providing a stimulus to enhance fitness capacities when structured appropriately. Monitoring workloads and individualizing training by playing position are important when implementing altitude training, given the varied responses.

Funder

Regional Department of Economy and Infrastructure of the Government of Extremadura (Spain) through the Regional Development Funds of the European Union

Spanish National Agency of Investigation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3