Metal-Coordinated Dynamics and Viscoelastic Properties of Double-Network Hydrogels

Author:

Zhu Shilei1,Wang Yan2,Wang Zhe2,Chen Lin2,Zhu Fengbo23,Ye Yanan23ORCID,Zheng Yong4ORCID,Yu Wenwen23,Zheng Qiang25

Affiliation:

1. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China

4. Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan

5. Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Biological soft tissues are intrinsically viscoelastic materials which play a significant role in affecting the activity of cells. As potential artificial alternatives, double-network (DN) gels, however, are pure elastic and mechanically time independent. The viscoelasticization of DN gels is an urgent challenge in enabling DN gels to be used for advanced development of biomaterial applications. Herein, we demonstrate a simple approach to regulate the viscoelasticity of tough double-network (DN) hydrogels by forming sulfonate–metal coordination. Owing to the dynamic nature of the coordination bonds, the resultant hydrogels possess highly viscoelastic, mechanical time-dependent, and self-recovery properties. Rheological measurements are performed to investigate the linear dynamic mechanical behavior at small strains. The tensile tests and cyclic tensile tests are also systematically performed to evaluate the rate-dependent large deformation mechanical behaviors and energy dissipation behaviors of various ion-loaded DN hydrogels. It has been revealed based on the systematic analysis that robust strong sulfonate–Zr4+ coordination interactions not only serve as dynamic crosslinks imparting viscoelastic rate-dependent mechanical performances, but also strongly affect the relative strength of the first PAMPS network, thereby increasing the yielding stress σy and the fracture stress at break σb and reducing the stretch ratio at break λb. It is envisioned that the viscoelasticization of DN gels enables versatile applications in the biomedical and engineering fields.

Funder

National Natural Science Foundation of China

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

2021 Major Science and Technology Program of Taiyuan

Fund for Shanxi “1331 Project”

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3