Directional-Freezing-Assisted In Situ Sol–Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation

Author:

Hou Yan1,Chen Junyong1,Pan Defang1,Zhao Lu1

Affiliation:

1. School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China

Abstract

The undesirable inherent natural characteristics of wood, such as low mechanical strength, flammability, and hygroscopicity, limit its potential applications in the thermal insulation industry. Overcoming these disadvantages can greatly expand the application scope of wood. A new attempt at wood modification, the directional-freezing-assisted in situ sol–gel strategy, was used to obtain wood–silica composite aerogels with the unique multi-level ordered porous structure of wood. This method enables silica nanoparticles to successfully replace lignin and facilitates the formation of strong hydrogen bonds between the silica and cellulose molecules. This results in improved mechanical properties for the composite with a density similar to that of natural wood but a mechanical strength that can be up to five times greater. The thermal conductivity coefficient is also reduced to 0.032 W (m·K)−1 compared to 0.066 W (m·K)−1 for natural wood. This aerogel composite exhibits improved fire resistance and hygroscopicity, with a decomposition temperature increase of approximately 45 °C compared to natural wood. Additionally, the composite demonstrates self-extinguishing behavior, with the structure remaining intact after combustion, and thus enhanced fire resistance. Simultaneously, the enhanced aerogel composite hydrophobicity, with water contact angle of up to 120°, is beneficial to a prominent thermal insulation performance in a high-humidity environment. The successful synthesis of wood-based composite aerogels provides a new and innovative approach for the utilization of wood resources in the thermal insulation industry.

Funder

Doctoral Research Initiation Fund of Qilu Normal University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3