Limiting Conditions for Droplet Fragmentation of Stabilized Suspension Fuels

Author:

Antonov Dmitrii V.ORCID,Romanov Daniil S.,Kuznetsov Genii V.

Abstract

The main barrier to the wide use of composite liquid fuels in the energy sector is the significant sedimentation of solid particles during fuel storage and transportation. As a result, the composition of fuel slurries changes quite fast and considerably when yet another portion of fuel is pumped from a storage tank. Stabilizing additives are one of the possible solutions to this problem. The technology of primary and secondary slurry fuel atomization is generally considered promising for obtaining a spray of small fragments (droplets and particles). This way, droplets of liquid components and solid particles can be produced with a size of less than 10 μm. A fuel aerosol with particles and droplets this small burns out rapidly. The most effective secondary droplet atomization technology is based on their microexplosive breakup in combustion chambers by superheating the water in the fuel to exceed its nucleation (boiling) point. As part of this research, we studied the impact of the main stabilizing additives to slurry fuels on droplet breakup behavior: heating time until breakup, breakup delay and duration, and the number, size, and velocities of secondary fragments. Soy lecithin and sodium lignosulfonate were used as stabilizers. The main components of the fuel slurries were water, rapeseed oil, diesel fuel, coal processing waste (filter cake), coking bituminous coal, soy lecithin, and sodium lignosulfonate. Droplets were heated at an ambient gas temperature ranging from 450 to 1050 K until the breakup conditions were achieved. Mathematical expressions were obtained for the relationship between input parameters and the key characteristics of the process. Principal differences and overall patterns of droplet breakup were established for slurries with and without stabilizing additives.

Funder

Tomsk Polytechnic University (TPU) development program, Priority 2030

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3