Prostate Gleason Score Detection by Calibrated Machine Learning Classification through Radiomic Features

Author:

Mercaldo FrancescoORCID,Brunese Maria Chiara,Merolla FrancescoORCID,Rocca AldoORCID,Zappia MarcelloORCID,Santone Antonella

Abstract

The Gleason score was originally formulated to represent the heterogeneity of prostate cancer and helps to stratify the risk of patients affected by this tumor. The Gleason score assigning represents an on H&E stain task performed by pathologists upon histopathological examination of needle biopsies or surgical specimens. In this paper, we propose an approach focused on the automatic Gleason score classification. We exploit a set of 18 radiomic features. The radiomic feature set is directly obtainable from segmented magnetic resonance images. We build several models considering supervised machine learning techniques, obtaining with the RandomForest classification algorithm a precision ranging from 0.803 to 0.888 and a recall from to 0.873 to 0.899. Moreover, with the aim to increase the never seen instance detection, we exploit the sigmoid calibration to better tune the built model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;CA Cancer J. Clin.,2018

2. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012;Eur. J. Cancer,2013

3. Cancer Statistics, 2021;CA Cancer J. Clin.,2021

4. Prostate Cancer Screening—A Perspective on the Current State of the Evidence;N. Engl. J. Med.,2017

5. Young, R.H. (2000). Tumors of the Prostate Gland, Seminal Vesicles, Male Urethra, and Penis, Armed Forces Int. of Pathology. Fasc. 28 in Atlas of Tumor Pathology/Prepared at the Armed Forces Institute of Pathology.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3