Clipping-Based Post Training 8-Bit Quantization of Convolution Neural Networks for Object Detection

Author:

Chen Leisheng,Lou Peihuang

Abstract

Fueled by the development of deep neural networks, breakthroughs have been achieved in plenty of computer vision problems, such as image classification, segmentation, and object detection. These models usually have handers and millions of parameters, which makes them both computational and memory expensive. Motivated by this, this paper proposes a post-training quantization method based on the clipping operation for neural network compression. By quantizing parameters of a model to 8-bit using our proposed methods, its memory consumption is reduced, its computational speed is increased, and its performance is maintained. This method exploits the clipping operation during training so that it saves a large computational cost during quantization. After training, this method quantizes the parameters to 8-bit based on the clipping value. In addition, a fully connected layer compression is conducted using singular value decomposition (SVD), and a novel loss function term is leveraged to further diminish the performance drop caused by quantization. The proposed method is validated on two widely used models, Yolo V3 and Faster R-CNN, for object detection on the PASCAL VOC, COCO, and ImageNet datasets. Performances show it effectively reduces the storage consumption at 18.84% and accelerates the model at 381%, meanwhile avoiding the performance drop (drop < 0.02% in VOC).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv.

2. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., and Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv.

3. Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018, January 28–23). Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.

4. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.Q. (2017, January 21–26). Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA.

5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible Quantization for Efficient Convolutional Neural Networks;Electronics;2024-05-14

2. Intelligent Drone Design for Precision Cashew Farming;2024 9th International Conference on Control and Robotics Engineering (ICCRE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3