Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro

Author:

Sakhrani Neeraj,Stefani Robert M.,Setti StefaniaORCID,Cadossi Ruggero,Ateshian Gerard A.,Hung Clark T.

Abstract

Articular cartilage injuries are a common source of joint pain and dysfunction. As articular cartilage is avascular, it exhibits a poor intrinsic healing capacity for self-repair. Clinically, osteochondral grafts are used to surgically restore the articular surface following injury. A significant challenge remains with the repair properties at the graft-host tissue interface as proper integration is critical toward restoring normal load distribution across the joint. A key to addressing poor tissue integration may involve optimizing mobilization of fibroblast-like synoviocytes (FLS) that exhibit chondrogenic potential and are derived from the adjacent synovium, the specialized connective tissue membrane that envelops the diarthrodial joint. Synovium-derived cells have been directly implicated in the native repair response of articular cartilage. Electrotherapeutics hold potential as low-cost, low-risk, non-invasive adjunctive therapies for promoting cartilage healing via cell-mediated repair. Pulsed electromagnetic fields (PEMFs) and applied direct current (DC) electric fields (EFs) via galvanotaxis are two potential therapeutic strategies to promote cartilage repair by stimulating the migration of FLS within a wound or defect site. PEMF chambers were calibrated to recapitulate clinical standards (1.5 ± 0.2 mT, 75 Hz, 1.3 ms duration). PEMF stimulation promoted bovine FLS migration using a 2D in vitro scratch assay to assess the rate of wound closure following cruciform injury. Galvanotaxis DC EF stimulation assisted FLS migration within a collagen hydrogel matrix in order to promote cartilage repair. A novel tissue-scale bioreactor capable of applying DC EFs in sterile culture conditions to 3D constructs was designed in order to track the increased recruitment of synovial repair cells via galvanotaxis from intact bovine synovium explants to the site of a cartilage wound injury. PEMF stimulation further modulated FLS migration into the bovine cartilage defect region. Biochemical composition, histological analysis, and gene expression revealed elevated GAG and collagen levels following PEMF treatment, indicative of its pro-anabolic effect. Together, PEMF and galvanotaxis DC EF modulation are electrotherapeutic strategies with complementary repair properties. Both procedures may enable direct migration or selective homing of target cells to defect sites, thus augmenting natural repair processes for improving cartilage repair and healing.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3