Enhanced Impedance Measurement to Predict Electromagnetic Interference Attenuation Provided by EMI Filters in Systems with AC/DC Converters

Author:

Wan LuORCID,Negri SimoneORCID,Spadacini Giordano,Grassi FlaviaORCID,Pignari Sergio Amedeo

Abstract

Due to the widespread integration of renewable energy sources connected to AC and DC power systems by means of power electronics converters, electromagnetic noise propagates along lines, and metallic earth-return structures. EMI filters are commonly used to mitigate the common mode and differential mode noise at the interface of distribution lines, and their suppression characteristics are usually assessed in standard test setups, the impedances of which are, however, scarcely representative of real-world applications. In this paper, an online, inductively coupled impedance measurement method is proposed. A sensitivity analysis to highlight the benefits of the proposed setup and experimental verification is performed. The proposed method enables non-intrusive impedance measurement in energized systems, including power converters. These measures, in turn, allow the evaluation of modal insertion losses of EMI filters in real-world operating conditions. The three-phase example considered in this study shows significant deviations from manufacturer specifications, thus justifying the need for more advanced estimation techniques.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inductively Coupled in-Circuit Measurement of Two-Port Admittance Parameters;IEEE Transactions on Industrial Electronics;2024-10

2. Accuracy Assessment of Non-Intrusive Measurement of Two-Port Impedance and Admittance Parameters by Inductive Couplers;2024 IEEE International Symposium on Measurements & Networking (M&N);2024-07-02

3. Impedance Determination of DUT by use of Line Injector Measurement Method;2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan / Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa);2024-05-20

4. Methodology for Extracting Low-Frequency Input Impedance of Personal Computer During Operation Using Dual Current Probes Method;IEEE Transactions on Electromagnetic Compatibility;2024-04

5. Bypass Capacitor Design for Wideband Impedance Measurements of Inductive Coupling Approaches;2023 2nd International Conference on Sensing, Measurement, Communication and Internet of Things Technologies (SMC-IoT);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3