Abstract
The present study investigates the strain-rate-dependent mechanical performances of three different kinds of polymers in low-temperature applications, including plastic piping systems. Recently, lightweight constructions have been increasingly used in ship and offshore structures because using low-density materials reduces the structural weight of products. However, most of the existing research outcomes have not focused on low-temperature applications. In the present study, the mechanical and failure characteristics of acrylonitrile butadiene styrene (ABS), polyethylene (PE), and polyvinylidene fluoride (PVDF), which are the most widely used in ship and offshore industries, were tested under low-temperature conditions. The quasistatic tensile stress–strain responses of the polymers were observed at rates of 10−2, 10−3, and 10−4 s−1. As the temperature decreased, the tensile strength and Young’s modulus of tested polymers increased. The fracture strain and modulus of toughness of ABS were considerably lower than those of PE and PVDF at room and low temperatures. When compared with mechanical properties, PVDF displayed superior capability, and each polymer showed different fracture surface characteristics, such as ductility and brittleness. The quantitative material properties tested at various temperatures and strain-rates can be used as material information for the finite element (FE) analysis and material parameters for the development of advanced constitutive models.
Funder
Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea
Ministry of Oceans and Fisheries
R&D Platform Establishment of Eco-Friendly Hydrogen Propulsion Ship Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献