Working Condition Recognition of a Mineral Flotation Process Using the DSFF-DenseNet-DT

Author:

Liu Hongchang,He Mingfang,Cai WeiweiORCID,Zhou Guoxiong,Wang Yanfeng,Li LiujunORCID

Abstract

The commonly used working condition recognition method in the mineral flotation process is based on shallow features of flotation froth images. However, the shallow features of flotation froth images frequently have an excessive amount of redundant and noisy information, which has an impact on the recognition effect and prevents the flotation process from being effectively optimized. Therefore, a working condition recognition method for the mineral flotation process based on a deep and shallow feature fusion densely connected network decision tree (DSFF-DenseNet-DT) is proposed in this paper. Firstly, the color texture distribution (CTD) and size distribution (SD) of a flotation froth image obtained in advance are approximated by the nonparametric kernel density estimation method, and a set of kernel function weights is obtained to represent the color texture and size features, while the deep features of the flotation froth image are extracted through the densely connected network (DenseNet). Secondly, a two-stage feature fusion method based on a stacked autoencoder after Concat (Cat-SAE) is proposed to fuse and reduce the dimensionality of the extracted shallow features and deep features so as to maximize the comprehensive description of the features and eliminate redundant and noisy information. Finally, the feature vectors after fusion dimensionality reduction are fed into the densely connected network decision tree (DenseNet-DT) for working condition recognition. Multiple experiments employing self-built industrial datasets reveal that the suggested method’s average recognition accuracy, precision, recall and F1 score reach 92.67%, 93.9%, 94.2% and 0.94, respectively. These results demonstrate the proposed method’s usefulness.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Pattern recognition and computer vision for mineral froth;Wang;Int. Conf. Pattern Recognit. (ICPR’06),2006

2. Shape-weighted bubble size distribution based reagent predictive control for the antimony flotation process;Ai;Chemom. Intell. Lab. Syst.,2019

3. Reagent Predictive Control Using Joint Froth Image Feature for Antimony Flotation Process;Ai;IFAC-Pap.,2018

4. DTCWT-based zinc fast roughing working condition identification;He;Chin. J. Chem. Eng.,2018

5. Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis;Harrave;Miner. Eng.,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3