New Construction Solutions of Gear Using in Space Vehicle Control Systems

Author:

Pacana JacekORCID,Siwiec DominikaORCID,Pacana AndrzejORCID

Abstract

Outer space presents construction challenges that are completely different from the terrestrial environment. They should be characterized by high resilience and indefinite durability because there is no possibility of repair during exploitation. There are drives in spacecraft control systems that are necessary to move solar panels, robotic arms, and manipulators, and also to position antennas. In these devices, they have applications where harmonic drives are characterized by high kinematic accuracy but relatively low mechanical strength. The analysis presented in this study is aimed at modifying the shape of the harmonic drive to increase its durability and reliability. In this study, the most vulnerable damage element of the harmonic drive is the flexspline. The calculation was carried out using the finite element method (FEM) in the computer program ABAQUS. A standardized shape was tested as a basic model, and several other design solutions were proposed. For each of them, the mechanical strength was determined, which allowed the selection of the most preferred shape for the flexspline of the harmonic drive. The specific environmental requirements of the expectations for sand for gear used in spacecraft control systems were included in the analysis. The selected construction solutions of the flexspline allow for longer work and transfer of greater loads by the harmonic driver than the solutions currently used. The choice of harmonic driver design shape allows for failure-free and maintenance-free work in space vehicle control systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3