Abstract
The understanding of wind field characteristics during thunderstorms is key to structural design for resistance to thunderstorms. In this paper, the directional thunderstorm wind model is adopted to analyze the characteristics of vertical variations of the wind field in a typical thunderstorm event in the Beijing urban area, based on the measured data. First, the longitudinal and lateral fluctuating wind speed components were decoupled and the change of direction was obtained. Then, variation of the wind speed, wind direction, turbulence intensity, turbulence integral length scale, and gust factor with the height and time were studied. The measured thunderstorm wind spectrum and the coherence function of horizontal longitudinal reduced turbulent fluctuations were analyzed and compared with empirical models. The results showed that the wind speed profile presented an obvious “nose shape” near the peak wind speed. The longitudinal turbulence integral scale was larger than the lateral one. The Von Karman spectrum is relatively effective in fitting the thunderstorm wind spectrum. Compared with synoptic winds, the gust factor during the pass of thunderstorm wind is larger, so it seems necessary to consider the influence of thunderstorm wind in engineering design.
Funder
Beijing Natural Science Foundation
National Natural Science Foundation of China
Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献