Abstract
In this work, we introduce a new workflow to solve portfolio optimization problems on annealing platforms. We combine a classical preprocessing step with a modified unconstrained binary optimization (QUBO) model and evaluate it using simulated annealing (classical computer), digital annealing (Fujitsu’s Digital Annealing Unit), and quantum annealing (D-Wave Advantage). Starting from Markowitz’s theory on portfolio optimization, our classical preprocessing step finds the most promising assets within a set of possible assets to choose from. We then modify existing QUBO models for portfolio optimization, such that there are no limitations on the number of assets that can be invested in. Furthermore, our QUBO model enables an investor to also place an arbitrary amount of money into each asset. We apply this modified QUBO to the set of promising asset candidates we generated previously via classical preprocessing. A solution to our QUBO model contains information about what percentage of the whole available capital should be invested into which asset. For the evaluation, we have used publicly available real-world data sets of stocks of the New York Stock Exchange as well as common ETFs. Finally, we have compared the respective annealing results with randomly generated portfolios by using the return, variance, and diversification of the created portfolios as measures. The results show that our QUBO formulation is capable of creating well-diversified portfolios that respect certain criteria given by an investor, such as maximizing return, minimizing risk, or sticking to a certain budget.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference38 articles.
1. Shor, P.W. (1994, January 20–22). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA.
2. Ising formulations of many NP problems;Lucas;Front. Phys.,2014
3. Glover, F., Kochenberger, G., and Du, Y. (2018). A tutorial on formulating and using QUBO models. arXiv.
4. Application of quantum annealing to nurse scheduling problem;Ikeda;Sci. Rep.,2019
5. Reverse quantum annealing approach to portfolio optimization problems;Venturelli;Quantum Mach. Intell.,2019
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献